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The neurotrophic hypothesis: where does it stand?

ALUN M. DAVIES

School of Biological and Medical Sciences, Bute Medical Building, University of St. Andrews, St. Andrews,
Fife KY16 9TS, U.K.

SUMMARY

In the developing peripheral nervous system many neurons die shortly after their axons reach their target
fields. This loss is thought to match the number of neurons to the size and requirements of their target
fields because altering target field size before innervation affects the number of neurons that survive. The
neurotrophic hypothesis provides an explanation for how target fields influence the size of the neuronal
populations that innervate them. This hypothesis arose from work on nerve growth factor (NGF), the
founder member of the neurotrophin family of secreted proteins. Its principal tenet is that the survival of
developing neurons depends on the supply of a neurotrophic factor that is synthesized in limiting amounts
in their target fields. The neurotrophic hypothesis has, however, been broadened by the demonstration
that multiple neurotrophic factors regulate the survival of certain populations of neurons. For example,
some neurons depend on several different neurotrophic factors which may act concurrently or sequentially
during target field innervation. In addition, there are aspects of neurotrophin action that do not conform
with the classic neurotrophic hypothesis. For example, the dependence of some populations of sensory
neurons on particular neurotrophins before significant neuronal death takes place raises the possibility
that the supply of these neurotrophins is not limiting for survival at this stage of development. There is
also evidence that at stages before and after sensory neurons depend on target-derived neurotrophins for
survival, neurotrophins act on at least some sensory neurons by an autocrine route. Yet despite the
growing wealth of information on the multiple roles and modes of action of neurotrophic factors, the
neurotrophic hypothesis has remained the best explanation for how neuronal target fields in the
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developing peripheral nervous system regulate their innervation density.

1. EVIDENCE FOR THE NEUROTROPHIC
HYPOTHESIS

The neurotrophic hypothesis (Levi-Montalcini &
Angeletti 1968; Thoenen & Barde 1980; Purves 1988)
gained substantial support from work on NGF and has
been further substantiated by studies of more recently
identified neurotrophic factors. The most important
direct evidence for the neurotrophic hypothesis is the
demonstration that populations of developing neurons
that are supported by NGF in vitro, namely sympathetic
neurons and certain kinds of sensory neurons, also
depend on NGF in vivo. Anti-NGF antibodies admin-
istered during the phase of target field innervation
eliminate these neurons whereas exogenous NGF
rescues neurons that would otherwise die (Levi-
Montalcini & Angeletti 1968; Johnson et al. 1980;
Hamburger & Yip 1984). Likewise, these same neurons
are lost in mice that have targeted null mutations in
the NGF gene (Crowley et al. 1994) or the NGF
receptor tyrosine kinase ({7kA) gene (Smeyne et al.
1994).

NGF synthesis commences in the peripheral target
fields of sensory and sympathetic neurons with the
arrival of the earliest axons (Davies et al. 1987;
Korsching & Thoenen 1988). At the onset of neuronal
death in sensory ganglia, the level of NGF mRNA
different cutaneous territories is proportional to their
final innervation density; high levels in future densely
innervated territories and low levels in future sparsely
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innervated territories (Harper & Davies 1990). After
uptake by sensory and sympathetic fibres in their
target fields, NGT is conveyed by fast axonal transport
to the cell bodies of the innervating neurons where it
exerts its survival-promoting effects (Hendry et al.
1974; Korsching & Thoenen 1983).

The purification of brain-derived neurotrophic fac-
tor (BDNF) and studies of the physiological sig-
nificance of this factor extended the generality of the
neurotrophic theory to a second neurotrophin (Barde
et al. 1982). BDNF promotes the survival of subsets of
embryonic sensory neurons iz vitro and prevents loss of
these neurons in vivo when administered to embryos
during the phase of naturally occurring neuronal death
(Hofer & Barde 1988). Accordingly, mice with targeted
null mutations in the BDNF gene (Ernfors ¢t al. 1994 a;
Jones et al. 1994) or BDNF receptor tyrosine kinase
(trkB) gene (Klein ef al. 1993) have specific deficiencies
in BDNF-dependent neurons.

Studies of the timing of the neurotrophin survival
response have provided additional evidence that
supports the neurotrophic hypothesis. Sensory neurons
initially survive independently of neurotrophins when
their axons are growing to their targets (Davies &
Lumsden 1984; Ernsberger & Rohrer 1988; Davies
1989) and become dependent on neurotrophins for
survival shortly after their axons reach their peripheral
targets (Buchman & Davies 1993; Vogel & Davies
1991) which is associated with a marked increase in the
expression of the respective neurotrophin receptors
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(Wyatt et al. 1990; Wyatt & Davies 1993; N. Ninkina
& A. M. Davies, unpublished results). In vitro studies of
different populations of cranial sensory neurons have
shown that the duration of neurotrophin independence
and the timing of the neurotrophin survival response is
controlled by an intrinsic timing mechanism in the
neurons (Vogel & Davies 1991). The neurons of the
vestibulocochlear, geniculate, petrosal and nodose
ganglia are derived from neurogenic placodes, are born
during the same period of development, but differ in
the distances their axons have to grow to reach their
peripheral and central targets. Vestibulocochlear
neurons, have the closest targets and survive without
neurotrophins for only a short time before becoming
dependent on BDNF for survival. Nodose neurons have
the most distant targets and survive for the longest time
without neurotrophins before becoming BDNF de-
pendent. Geniculate and petrosal neurons have in-
termediate target distances and survive for inter-
mediate times before becoming BDNF dependent.
Studies of the survival characteristics of neurons that
differentiate i vitro from neurogenic placodal cells
suggests that the duration of neurotrophin indepen-
dence is programmed in sensory neuron progenitor
cells (Vogel & Davies 1991). Furthermore, heterotopic
grafting experiments have shown that the presumptive
placodal ectoderm is not yet specified to differentiate
into neurons but that signals acting in the vicinity of
this ectoderm commits to the cells to a particular
neuronal fate (Vogel & Davies 1993).

The molecular cloning of BDNF and the recognition
of the homology between NGF and BDNF (Leibrock et
al. 1989) paved the way for the molecular cloning of
additional members of the neurotrophin family, which
include neurotrophin-3 (NT3) (Ernfors et al. 1990;
Hohn et al. 1990; Jones & Reichardt 1990; Rosenthal
et al. 1990) and neurotrophin-4 (NT4) (Berkemeier et
al. 1991; Hallbook et al. 1991; Ip et al. 1992). Much of
the work on the specific neurotrophin survival require-
ments of different kinds of sensory neurons during the
phase of naturally occurring neuronal death has been
carried out on dorsal root ganglion (DRG) neurons.
Because DRG contain a variety of functionally distinct
classes of sensory neurons for which few in vitro markers
were available until relatively recently, early work on
these neurons was hampered by the inability to
determine which kinds of sensory neurons respond to a
particular neurotrophin in culture. To circumvent the
shortcomings of using cultured DRG neurons and
determine if the neurotrophin survival requirements of
sensory neurons are correlated with their specific
sensory function, in witro studies were carried using
cranial sensory neurons which are segregated into
groups that serve different sensory modalities. These
studies provided the first clear evidence that the
neurotrophin requirements of sensory neurons during
the phase of naturally occurring neuronal death are
broadly related to sensory modality (for reviews, see
Davies 1987, 1994). Recent analysis of the kinds of
DRG neurons that express different ¢k genes (Mu ¢t al.
1993; McMahon et al. 1994) and analysis of sensory
neuron loss in mice with mutated neurotrophin genes
(Crowley et al. 1994; Ernfors et al. 1994a,b; Jones et al.
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1994; Conover et al. 1995; Liu et al. 1995) and
neurotrophin receptor genes (Klein et al. 1993 1994;
Smeyne et al. 1994) has reinforced this conclusion.

2. REFINEMENT OF THE NEUROTROPHIC
HYPOTHESIS

In its original form, the neurotrophic hypothesis
proposed that for survival, each population of neurons
depends on the supply of a single neurotrophic factor
from its target field. That multiple neurotrophic factors
cooperate in regulating the survival of certain popu-
lations of neurons became recognized with the dis-
covery of additional neurotrophins. The first evidence
that two different neurotrophins regulate the survival
of the same population of neurons came from in vitro
studies of the proprioceptive neurons of the trigeminal
mesencephalic nucleus (TMN). These neurons are
supported during the phase of neuronal death by
BDNF (Davies et al. 19865) and a muscle-derived
factor (Davies 1986) that has the same neuronal
specificity as NT3 (Hohn et al. 1990). Saturating levels
of either factor is capable of supporting the survival of
almost all of these neurons in culture and low levels of
these factors have a synergistic effect on survival
(Davies et al. 1986a). The physiological relevance of
these i witro observations has recently been sub-
stantiated by analysis of the phenotype of mice with
null mutations in the BDNF and NT3 genes. Neuron
counts in the TMN of neonatal mutant mice have
shown that, compared with wild type mice, there is an
approximate 509, reduction in both BDNF~/~ mice
(Ernfors et al. 1994a; Jones et al. 1994) and NT3 ™/~
mice (Ernfors et al. 1994b).

In addition to the contemporaneous cooperation of
different target-derived neurotrophins in regulating
the sensory neuron survival, recent work suggests that
several different target-derived neurotrophins can act
sequentially to promote the survival of developing
sensory neurons. Evidence for this came from i vitro
studies of embryonic mouse trigeminal ganglion
neurons (Buchman & Davies 1993; Davies et al. 1993).
When these neurons are grown at very low density in
defined medium at the stage when their axons normally
reach their peripheral targets iz vivo, all of the neurons
die unless BDNF, NT3 or NT4, but not NGF, are
present in the culture medium. Over the next few days
of development, the neurons acquire a survival
response to NGF while, at the same time, losing
responsiveness to BDNF, NT3 and NT4. The loss of the
BDNF survival response is associated with a marked
increase in the expression of kB transcripts encoding
non-catalytic receptors (N. Ninkina & A. M. Davies,
unpublished observations) and a marked shift in the
BDNF dose response to higher concentrations (Buj-
Bello et al. 1994).

The physiological relevance of the early i witro
responses of trigeminal neurons to BDNF and N'T'3 has
been strengthened by analysis of mice with null
mutations in genes encoding neurotrophins and their
receptors. The discovery that BDNF '~ mice (Ernfors e
al. 1994a; Jones et al. 1994), but not NT47/~ mice
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Figure 1. Schematic illustration of the developmental changes in the survival requirements of embryonic mouse
trigeminal neurons. The life history of an early trigeminal ganglion neuron is represented from left to right (not
necessarily drawn to scale). The onset of axon outgrowth, the approximate time when the peripheral axon comes into
proximity with its peripheral target and the period of development during which the neuron is most susceptible to
being eliminated by cell death are shown along the lower part of the diagram. From the onset of axon outgrowth to
the time the axon comes into proximity with its peripheral target, the neuron survives independently of neurotrophins
(upper box). The neuron then becomes responsive to both BDNF and NT3. After a transitional period of
responsiveness to BDNF, NT3 and NGF, the BDNF and NT3 responses are then lost, leaving the neuron dependent
on NGF for survival during the time when it is competing with other neurons for a limiting supply of NGF.

(Conover ¢t al. 1995; Liu et al. 1995), have marked
reductions of the numbers of neurons in the trigeminal
ganglion (between 56—73 9, less than normal), suggests
that BDNF, but not NT4, is important in maintaining
the survival of trigeminal neurons. Because only a
small minority of trigeminal neurons depend on BDNF
(5-109,) for survival during the period of development
when the number of neurons in the ganglion is
decreasing as a result of naturally occurring neuronal
death (Buchman & Davies 1993), it is likely that the
markedly decreased number of trigeminal neurons in
the BDNF/~ mice results from premature neuronal
death during the stage of BDNF responsiveness. The
physiological relevance of the early BDNF survival
response is further strengthened by the substantially
reduced neuronal complement of the trigeminal gan-
glion in &rkB™'~ neonates (60 9, less than normal) (Klein
etal. 1993). The response of early trigeminal neurons to
NT3 observed in vitro may also be physiologically
relevant because the neuronal complement of the
trigeminal ganglion in NT37/~ mice is also reduced by
649, compared with wild type mice (Ernfors ef al.
1994 4). Moreover, neuronal death in the trigeminal
ganglion of kB~ mice occurs earlier than in wild
type embryos, suggesting that BDNE is required for
survival in the early stages of trigeminal development
(L. Pinon, L. Minchiello, R. Klein & A. M. Davies,
unpublished observations). Figure 1 illustrates the
changing survival requirements of developing trigem-
inal neurons to neurotrophins.

Phil. Trans. R. Soc. Lond. B (1996)

3. ASPECTS OF NEUROTROPHIN ACTION
THAT DO NOT CONFORM WITH THE
NEUROTROPHIC HYPOTHESIS

Although several novel roles have been discovered
for neurotrophic factors that do not involve the
regulation of neuronal survival, such as affecting the
proliferation and differentiation of neuron progenitor
cells and regulating the expression of several differ-
entiated traits of neurons throughout life (reviewed by
Davies 1994), these functions of neurotrophins do not
come within the bounds of the neurotrophic hypothesis.
These studies demonstrate that neurotrophins are
multi-functional proteins, but do not invalidate the
neurotrophic hypothesis. Recent work has, however,
shown that neurotrophins may act on neurons in ways
that seem to contradict aspects of the neurotrophic
hypothesis.

(a) Non-limiting supplies of neurotrophins in the
target field

The neurotrophic hypothesis, which has tradition-
ally focused on the neurotrophic factor requirements of
neurons undergoing naturally occurring neuronal
death, proposes that neurotrophic factors are synthe-
sized in limiting amounts so that only the required
number of neurons are able to procure enough factor to
survive (Thoenen & Barde 1980; Davies 1987).
However, the demonstration that embryonic mouse
trigeminal neurons are dependent on BDNF and NT3
during the early stages of target field innervation
(Buchman & Davies 1993) before significant neuronal
death takes place in the ganglion (Davies & Lumsden
1984) implies that BDNF and NT3 are produced in
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sufficient quantities to ensure that the existing com-
pliment of neurons is maintained. That is, the target-
derived supply of BDNF and NT3 neurotrophins
during this stage of development is probably not
limiting. Indeed, it is possible that the reason why early
trigeminal neurons exhibit a transitory survival re-
sponse to BDNF and NT3 may be to sustain the
survival of the neurons whose axons reach the target
field during the early stages of its innervation. This
may delay the onset of neuronal death in the trigeminal
ganglion until most of the neurons have started to
innervate the target field, thereby ensuring that the
majority of neurons compete for a limiting supply of
NGF during the same period of development. It may
be advantageous for most of the neurons that innervate
a given target field to compete for survival at the same
time because this would maximize the choice for
selectively maintaining neurons on the basis of the
appropriateness of their axon terminations in the
target field.

(b) Autocrine supply of neurotrophins in developing
Sensory neurons

In accordance with the neurotrophic hypothesis,
numerous studies have shown that neurotrophins are
expressed in the peripheral and central targets of
developing sensory neurons. However, the detection of
BDNF mRNA and NT3 mRNA in subsets of DRG
neurons (Ernfors et al. 1988; Schecterson & Bothwell
1992) has raised the possibility that sensory neurons
could obtain BDNF or NT3 by paracrine or autocrine
routes operating in the ganglion. The first direct
experimental evidence for the operation of a neuro-
trophin autocrine loop came from i witro studies of
DRG neurons isolated from chicken embryos at the
stage when their axons are growing to their targets
(Wright et al. 1992). These early sensory neurons
undergo a clearly recognizable morphological change
during the first 24 h in culture before they become
dependent on added neurotrophins for survival.
Initially the neurons have small, spindle-shaped,
phase-dark cell bodies and short neurites. Subsequently
they develop spherical, phase-bright cell bodies and
extend long neurites. Although the rate at which this
maturational change takes place is accelerated by
exposure to either BDNF or N'T3, the neurons need not
obtain these factors from other cells to mature because
they still mature when cultured as single cells in
separate culture wells containing chemically defined
medium without added neurotrophins. Because
RT/PCR revealed that early DRG cells express BDNF
mRNA, antisense BDNT oligonucleotides were used to
investigate if BDNTF might act by an autocrine route to
promote maturation. Each of three different antisense
BDNF oligonucleotides, but none of the corresponding
sense control oligonucleotides, reduced by 40-50 9%, the
number of neurons that underwent the maturational
change. The inhibition of neuronal maturation by
antisense BDNF oligonucleotides was not due to a non-
specific reduction of protein synthesis because the effect
of the oligonucleotides could be specifically reversed by
adding very low concentrations of BDNF to the culture

Phil. Trans. R. Soc. Lond. B (1996)

medium. The antisense BDNF oligonucleotides did not
affect the survival of early DRG neurons, indicating
that the BDNF autocrine loop is not required for
survival at this stage.

The expression of BDNF mRNA in a subset of
embryonic DRG neurons when naturally occurring
neuronal death is taking place (Schecterson & Bothwell
1994), has raised the possibility that BDNF may act by
an autocrine route in some neurons during this period
of development. However, measurement of BDNF
mRNA in different populations of cranial sensory
neurons that respond to either NGF or BDNF has
shown that during the phase of naturally occurring
neuronal death BDNF mRNA is expressed pre-
dominantly in neurons that respond to NGF, not
BDNF (M. Robinson & A. M. Davies, unpublished
observations). Thus during the period of naturally
occurring neuronal death BDNF is unlikely to act by
an autocrine route in at least most cranial sensory
neurons. This is consistent with the neurotrophic
hypothesis because an autocrine loop at this stage in
development would interfere with the selection of
neurons by target-derived neurotrophins. It is possible
that the BDNF made by NGF-dependent sensory
neurons during this stage acts on other cells such as the
neurons in the CNS with which they synapse.

Recent work using antisense-BDNYF oligonucleotides
in cultures of adult DRG neurons has demonstrated
the operation of a BDNF autocrine loop in a subset of
these neurons (Acheson et al. 1995). In contrast to early
sensory neurons, the BDNF autocrine loop at this stage
appears to be required for survival. Although this loop
operates long after limiting levels of target-derived
neurotrophins regulate neuron number along the lines
of neurotrophic hypothesis, this work provides a clear
example of how neurons may depend on neurotrophins
for survival yet obtain these from sources other than
their targets.

4. CONCLUSIONS

Since its formulation, the neurotrophic hypothesis
has remained an attractive scheme for explaining how
neuronal target fields in the peripheral nervous system
regulate their innervation density. Although recent
work has shown that neurotrophins and other neuro-
trophic factors have functions in addition to regulating
neuronal survival and may act on neurons in ways that
were not originally anticipated, the neurotrophic
hypothesis has gained increasing experimental support.
Although there may be particular circumstances in
which not all of the tenets of this hypothesis are
satisfied in the regulation of neuronal survival during
development, there is no experimental evidence to cast
serious doubt on the validity of this hypothesis. There
is, however, one important caveat. The experimental
validation of the neurotrophic hypothesis has relied
almost exclusively on studies of neurons of the
peripheral nervous system. With the exception of
motoneurons, which innervate clearly defined muscle
groups in the periphery, relatively little is known about
the control of neuronal survival in the CNS. The extent
to which different classes of CNS neurons depend on
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neurotrophic factors for survival and whether they
obtain these by local autocrine or paracrine routes,
from post-synaptic or pre-synaptic neurons or from
other cells in their projection territories or local
environments is largely unknown. This important and
challenging work will confirm or refute the generality
of the neurotrophic hypothesis.

Work on neurotrophic factors in the author’s laboratory is
supported by grants from The Wellcome Trust, Cancer
Research Campaign, Action Research, Medical Research
Council and Royal Society.
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